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SUMMARY 

The algorithm for solving the three-dimensional non-steady Navier-Stokes equations by the explicit 
forward Euler method is shown and the Galerkin finite element formulation is presented. As a 
numerical example, an entrance Row in a square duct is illustrated. 
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INTRODUCTION 

Recently, finite element methods (FEM) based on a fractional step approach have been 
presented for three-dimensional (and/or large, two-dimensional) time-dependent flow 
pr~blems.'-~ They are an application of Chorin's method6*' in finite difference formats to 
FEM and have a simple algorithmic structure of treating the momentum equations and the 
continuity equation separately. The discretization, however, is rather complicated for the 
simplicity of the algorithm, because the essential boundary condition for the normal 
component of the velocity must be embodied into the discretized continuity equation.2 

In the present paper, we show a new version of the fractional step method. In our method, 
to eliminate the above complexity a potential function is introduced and Poisson equation for 
the potential is directly discretized, in which the essential boundary condition for the normal 
component of the velocity is treated as the natural boundary condition for the potential. This 
method is also applicable to steady flow problems.' 

As a numerical example, an entrance flow in a square duct will be illustrated in the last 
section. 

ALGORITHM 

The non-steady Navier-Stokes equations and the continuity equation written in non- 
dimensional form are: 

au 1 
at Re -+ (u.V)u = -vp +- v2n 

v.u=o (2) 

where u, p, t and Re are velocity vector, pressure, time and the Reynolds number, 
respectively, and the other mathematical symbols are used in the standard manner. 
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Our method is a kind of time marching scheme and is based on Helmholtz's decomposition 

Letting urn and pm be the solution at t = m 6t (st is a time increment), we define urn+* and 
theorem. It is formulated as follows: 

pm+l through: 

v.um+l = 0 (4) 

Equation (3) is rewritten as follows: 

I ( 5 )  
1 um+l + St Vp"+l =urn + 6t - V U "  - (Urn.v)Urn 

{Re 

The left-hand side of equation (5 )  is Helmholtz's decomposition of the right-hand side 

Therefore, the procedure of Helmholtz's decomposition is the key to our method. Such a 

First, we define urn+$ by: 

because urn+' is solenoidal (V.u'"+' = 0) and VpmC1 is irrotational (VxVpmt1 = 0). 

decomposition can be done as follows: 

1 
Re 

f' 
2 = urn + St -Vp" + - V U "  - (U".vjU" 

In general, urn+$ is not solenoidal because pm is used instead of pm+' in equation (5) .  
Taking the rotation of equations (5 )  and (6) leads to: 

Equation (7) means: 

where 4 is some potential function. 
Taking the divergence of equation (8) and using equation (4) leads to: 

v4 = -V.n"'f (9) 
We can obtain the potential 4 from equation (9) and then the velocity urn+' from equation 
(8). 

On the other hand, substituting equations ( 5 )  and (6) into equation (8) leads to: 

i.e. 
6t vpm+1= at Vp" - v4 

where an integral constant is set equal to zero. 
The above procedure is summarized in Figure 1. 

INITIAL, AND BOUNDARY CONDITIONS 

Let R be the flow region to be solved and r be the boundary of R. 
The initial conditions are given as follows: 

u(x, 0) = UO(X) 
P(X, 0) = P"X) 
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Start 

Convergent End 3. 1- 1. Calculate urn+: from equation 6 

2. Solve equation (9) with respect to 4 

3. Calculate urn+' from equation (8) 

4. Calculate pm+' from equation (10) 
3. 
3. 

Figure 1. Algorithm 

In the present method, the initial velocity field uo does not always have to satisfy the 
incompressibility condition. 

In the velocity-pressure formulations, the surface traction is usually given as the natural 
boundary condition. It is, however, difficult to visualize such a condition in flow problems. 

In the present paper, we therefore adopt the following boundary conditions.' 

u=g o n r l  
1 au -pn +- - = h on r2 

Re an 

where g and h are given boundary data, n is the unit vector outward normal to the boundary, 
a/an is the outward normal derivative to the boundary, and rl and r2 are subsets of r 
satisfying the following conditions: 

rl ur2 = r 
rl n r2 = p, 

In our method, there also must be given the boundary conditions for 4. We assume that 
they are expressed as follows: 

%=o  on r, an 
+ = O  on Tz 

From equations (8) and (lo), we can see that the boundary conditions (14) mean: 

n.um+'=n.um+~ on rl 
pm+l = Prn on r2 

(14) 

It should be noticed that the boundary condition (15), is for the normal component of the 
velocity to the boundary and that it says nothing about the tangential component. In general, 
the tangential component of urn+' is different from that of urn+* and this difference decreases 
as am" converges to the steady solution. 
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GALERKIN FORMULATION 

In this section, we use the 8-node isoparametric brick, in which the velocity and the potential 
are interpolated by trilinear basis functions Nk and the pressure is piecewise constant 
(defined at the centroid of each element). 

Letting (u, v, w) be the velocity components in an orthogonal Cartesian co-ordinate system 
(x, y, z ) ,  equation (6) is rewritten as follows: 

Applying the conventional Galerkin method to each of equations (16) and the boundary 
conditions (12) leads to the element matrix equations: 

1 
Re 

M..~m+f = Mijw," + 6t Bxi + p:C,i -- A,u? - 0r.j" 11 I 

where 

1 + p"C . -- A..wm- 
Re " ' e ZI 

Bai = N,h, dr,  (a = x, y, 2) 

In the above equations, indices i, j and k denote the element node number; the summation 
convention is employed on repeated indices (in this case, 1 to 8), index e denotes the 
element number, and (k, h,,, h,) denote the Cartesian components of h. 

For saving CPU time, we adopted two corruptions: 
1. The element matrix Mij is the so-called 'mass matrix' and we simplify it to the 'lumped 

2. The element matrix DT (advection matrix) is modified as  follow^.^ 
mass' approximation by row-sum at element level. 

D; = urQii + ~ , " 4 ~ ~  + w,"Ezii (19) 
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where 

doe (a = x, y, z) 

Applying the conventional Galerkin method to equation (9) and the boundary conditions 
(14) leads to the element matrix equation: 

It should be noticed that the element matrix Aii is symmetric and constant at any time 
step. Therefore once we solve the global equations by using Gauss elimination, the global 
matrix of A, is factored into so-called LDLT and stored on disk (or core memory). 

Applying the conventional Galerkin method to equation (8) leads to the element matrix 
equations: 

M..um+l= El 1 M..~m+$+&~4~ 11 1 

MiiuY+’ = Miiu)+f + E,,& 
MiiwY+’ = Mijw,”+f+ Ezij4i 

This element matrix Mii is also lumped. 

Figure 2. Boundary conditions 
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As for equation (lo), the piecewise linear function 4 is reduced to the piecewise constant 
pressure p as follows: 

where 4e denotes the value at the centroid of element e and is expressed as the same as ur 
etc. 

NUMERICAL EXAMPLE 

Numerical computation was done for an entrance flow in a square duct. The boundary 
conditions and the finite element mesh are shown in Figures 2 and 3, respectively. Only a 
quarter part is calculated in consideration of the symmetricity of the duct. The initial 
conditions are u = 0 and p = 0. The Reynolds number is 20, which is calculated with respect 
to the side length of the duct and the inlet velocity. 

Figure 4 shows the steady state pressure contour lines. We can see the large pressure 
gradient at the inlet. In Figures 5, 6 and 7, we show the steady state velocity distributions. 

CONCLUSIONS 

This paper has presented the new version of the finite element method based on the 
fractional step approach for the three-dimensional non-steady Navier-Stokes equations. As a 
numerical example, the entrance flow in a square duct was illustrated. 

Figure 3. Finite element mesh 
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Figure 4. Steady state pressure contour lines 
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Figure 5. Steady state axial velocity development at the duct centre line 
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Figure 6 .  Steady state velocity vectors on the symmetric cross-sections 
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Figure 7.  Three-dimensional view of steady state velocity distribution 
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